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Abstract. The asymptotic collinear factorisation theorem, which holds for diffractive deep-inelastic scat-
tering, has important modifications in the sub-asymptotic HERA regime. We use perturbative QCD to
quantify these modifications. The diffractive parton distributions are shown to satisfy an inhomogeneous
evolution equation. We emphasise that it is necessary to include both the gluonic and sea-quark t-channel
components of the perturbative pomeron. The corresponding pomeron-to-parton splitting functions are
derived in the appendix.

1 Introduction

A notable feature of deep-inelastic scattering is the ex-
istence of diffractive events, γ∗p → X + p, in which the
slightly deflected proton and the cluster X of outgoing
hadrons are well-separated in rapidity.1 At high energies,
the large rapidity gap is believed to be associated with
pomeron, or vacuum quantum number, exchange. Some
secondary reggeons also have vacuum quantum numbers,
but these contributions are exponentially suppressed as a
function of the gap size, and are negligible at small xP.
The diffractive events make up an appreciable fraction of
all (inclusive) deep-inelastic events, γ∗p → X. We will re-
fer to the diffractive and inclusive processes as DDIS and
DIS, respectively.

The recent improvement in the precision of the DDIS
data [1, 2] allow improved analyses to be performed and
more reliable diffractive parton densities to be extracted.
Moreover, measurements of diffractive charm production
in DIS are available [3], which provide added constraints,
particularly on the diffractive gluon density.

It is common to perform analyses of DDIS data based
on two levels of factorisation. First the diffractive structure
function F

D(3)
2 may be written as the convolution of the

usual coefficient functions as in DIS with diffractive parton
distribution functions (DPDFs) aD [4]:

F
D(3)
2 =

∑
a=q,g

C2,a ⊗ aD, (1)

with factorisation scale µF, where aD = βqD or βgD sat-
isfy DGLAP evolution in µF. The collinear factorisation

a e-mail: graeme.watt@desy.de
1 The process and the corresponding variables are shown

in Fig. 1.
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Fig. 1. Diagram showing the kinematic variables which describe
the DDIS process γ∗p → X+p: xP is the fraction of the proton’s
momentum transferred through the rapidity gap, β ≡ xB/xP is
the fraction of this momentum carried by the struck quark, xB

is the Bjorken x variable, q2 ≡ −Q2 is the photon virtuality,
and t is the squared four-momentum transfer

theorem (1) applies when µF is made large, therefore it
is correct up to power-suppressed corrections. In a second
stage, Regge factorisation is usually assumed [5] (see, for
example, the preliminary H1 analysis [2]), such that the
diffractive parton densities aD are written as a product of
the pomeron flux factor fP(xP, t) and the pomeron parton
densities aP = βqP or βgP. Taking µF = Q, the t-integrated
form is

aD(xP, β, Q2) = fP(xP) aP(β, Q2), (2)

where the pomeron flux factor is taken from Regge phe-
nomenology,

fP(xP) =
∫ tmin

tcut

dt
eBP t

x
2αP(t)−1
P

, (3)

with αP(t) = αP(0)+α′
P
t. For simplicity of presentation we

omit the contribution of secondary reggeons to the right-
hand side of (2). Strictly speaking, the parameters αP(0),
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α′
P
, and BP must be taken from fits to soft hadron data.

However, then one fails to describe the xP dependence of the
F

D(3)
2 diffractive data. Therefore, as a rule [2], α′

P
and BP

are fixed by the analyses of soft hadron data, while αP(0),
and the parameters describing the input pomeron parton
distributions at some scale µ0, are determined from a fit to
the DDIS data. In these analyses, the pomeron is treated
as an effective pole in the complex angular momentum
plane, and regarded as a hadron-like object of more or less
fixed size. This Regge factorisation takes place in the non-
perturbative region at some low scale µ, with µ < µ0, of
the order of the (inverse) size of the hadron. However, in
such fits, the value of αP(0) extracted from DDIS data (for
example, 1.17 in [2]) lies significantly above the value of 1.08
obtained from soft hadron data [6]. This indicates that there
is a contribution coming from the small-size component of
the pomeron, that is, coming from the perturbative QCD
region where the vacuum singularity has a larger intercept.

This Regge factorisation approach is a simplified phe-
nomenological model. Here we shall not assume Regge fac-
torisation for the whole aD, but instead study the impact of
applying perturbative QCD to the analysis of DDIS data.
The procedure we discuss in this paper formed the basis
of our earlier DDIS analyses [7, 8].

The content of this paper is as follows. In Sect. 2we recall
the collinear factorisation which underlies the description
of inclusive DIS. This paves the way for the discussion in
Sect. 3 of the evolution equations for the diffractive parton
distributions aD due to the perturbative pomeron. These
equations contain an appreciable inhomogeneous term2,
analogous to the inhomogeneous term in the evolution equa-
tions for the parton distributions of the photon. Since the
evolution equations for the diffractive densities aD are a
little subtle, it may be helpful at this stage to look ahead
to the discussion in Sect. 7. Although collinear factorisa-
tion holds in DDIS in the asymptotic limit, at the relevant
HERA energies there exist important modifications. These
are discussed in Sect. 4. Then in Sect. 5 we explain why it
is necessary to include a pomeron made of a sea-quark–
antiquark pair in addition to the pomeron made of two
t-channel gluons. Section 6 shows some relevant properties
of a recent analysis [7] using this approach, and Sect. 7
summarises how universal diffractive parton densities are
extracted, after allowing for the modifications to DDIS fac-
torisation. The appendix contains a derivation of all of the
pomeron-to-parton leading order (LO) splitting functions
that are necessary to analyse DDIS data.

2 Collinear factorisation

The problem in the analysis of both DIS and DDIS data
is that we can only use perturbative QCD (pQCD) at
small distances, that is, at large Q2. Within pQCD we can
study the evolution of parton distributions, but the initial

2 The existence of the inhomogeneous term has been known
for some time [9,10], but it is ignored in most phenomenological
analyses of DDIS data.

Fig. 2. Ladder-type diagram
for the DIS cross section. The
gluon line crossing two gluon
rungs means that this is a
NNLO contribution with two
αS factors unaccompanied by
ln(Q2/µ2) enhancements

distributions at some relatively low scale µ are of non-
perturbative origin and, at present, have to be determined
by fitting to the data. A factorisation theorem underlies
the analysis. It enables the amplitude to be factored into
two parts, one purely in the pQCD domain, and the other
parameterised by a phenomenological ansatz. In terms of
Feynman diagrams, the factorisation is based on the re-
summation of the series of the most important higher-order
corrections where the small coupling αS is enhanced by a
large ln(Q2/µ2). That is, we can divide such diagrams, at
a “logarithmic loop or cell”, into a part depending only on
large scales from a part containing the low scale. Let us be
more explicit.

First, recall how collinear factorisation occurs in DIS.
In a physical gauge (such as the axial gauge for the gluon
field with AA

µ q′µ = 0, where q′ is the light-cone vector in the
photon direction) the leading log contributions come from
ladder-type graphs3; see Fig. 2 [11]. In such graphs any box
may be considered as the logarithmic loop which provides
the factorisation at some scale µ = µF. Indeed, the integral
over each virtuality qi takes the form

∫ q2
i+1 dq2

i /q2
i , and in

order to generate a large log to compensate the small αS,
we need to be in the strongly-ordered region4 with q2

i �
q2
i+1. Because of this strong ordering, the parton qi may be

considered on-mass-shell for the upper part of the diagram,
which can be regarded as the matrix element of the hard
subprocess where all the other virtualities are much larger
than qi. This upper part represents the γ∗qi interaction,
and contains the coefficient function and the upper part of
the ladder. At LO we keep the LO coefficient function and

3 Besides the ladder graphs, we have to include virtual loop
corrections, which may be included in the usual way by the
plus prescription.

4 (LO) DGLAP evolution effectively sums up these leading
ln(Q2/µ2) terms. In the case of BFKL we have an analogous
factorisation. However, instead of

∫
dq2

i /q2
i , we have

∫
dzi/zi

to provide the strong ordering in emission angles of the gluons.
In this case the t-channel partons are two reggeised gluons.
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the LO splitting functions, so each upper loop is logarithmic
and could provide an alternative factorisation scale µF. The
distribution of parton qi depends on the parameterised
input distribution at some fixed scale µ0 determined by
fitting to the data in the pQCD domain. Starting with the
phenomenological distribution at µ0 the PDF is evolved
up to the factorisation region µF. The physical result does
not depend on the choice of the factorisation scale µF (up
to O(αS) corrections when working at LO accuracy). If we
change µF we move from one cell to another. The change
in the distribution in going to the new µF is compensated
by the change of the hard interaction in the upper part of
the diagram.

Corrections to this LO picture occur if two gluons may
have comparable virtualities or if an extra gluon were to
cross one or more of the existing gluon rungs (as shown in
Fig. 2). In these cases the large log integrations are absent.
In such contributions the extra powers of αS are unac-
companied by logarithmic enhancement, that is, they are
higher-order in αS (NLO, NNLO, . . . ) contributions to the
splitting functions. If the additional gluon couples to the
upper blob or the uppermost rung, then it would involve
higher-order contributions to the coefficient function.

3 Evolution of the diffractive parton densities

Let us now turn to DDIS. Here we have to include a rapidity
gap between the ladder and the proton target, and to iden-
tify the appropriate factorisation scale for the DPDF evo-
lution.

3.1 Starting scales

Consider the LO Feynman graph where pomeron exchange
is described by a gluon ladder; see the left-hand side of
Fig. 3. The kinematics of the process are fixed by the mo-
mentum k̃ of the first emitted parton at the end of the
rapidity gap. Indeed, the virtuality of the first t-channel
parton in the upper ladder fixes the scale µ2 = k2

t /β̃, where
β̃ is the (light-cone) momentum fraction of the pomeron
carried by parton k̃ and kt is its transverse momentum.
The derivation of µ2 = k2

t /β̃ is given in the appendix; see
(A.44). We assume that |t| � k2

t . This scale µ plays the rôle
of the lowest factorisation scale for the usual DGLAP evo-
lution in the upper part of the diagram. Simultaneously,
it is the upper scale for the lower part of the diagram.
Indeed, the integral over the transverse momentum lt of
the t-channel gluon has the logarithmic form for l2t � µ2,
whereas for l2t � µ2 it converges as dl2t /l4t and its contri-
bution may be neglected as usual. After accounting for the
evolution in the lower part of the diagram, and integrating
over lt, the probability amplitude to find the appropri-
ate t-channel gluons is given, at LO, by the conventional5

5 To be precise, the skewed gluon distribution is required,
which can be written as a constant factor (A.23) multiplied by
the conventional gluon distribution [12].

Fig. 3. A ladder-type diagram showing a contribution to the
diffractive parton densities aD(xP, β, µ2

F) in the perturbative
region, µ > µ0 ∼ 1 GeV. DGLAP evolution for the pomeron
densities (aP = βqP, βgP) is performed from µ to µF for each
component µ of the perturbative pomeron in the perturbative
interval µ0 < µ < µF and then the sum is taken. The virtuality
µ2 of the first t-channel parton in the upper ladder is fixed by the
momentum k̃ of the emitted parton at the edge of the rapidity
gap, µ2 = k2

t /β̃; see (A.44). The dashed lines in the upper ladder
may be either gluons or quarks. The two gluon ladders shown in
the diagram represent pomerons. In general, these ladders can
also contain quarks as well as gluons. We label the contributions
where the two uppermost t-channel partons (labelled l⊥ on the
left-hand side) are gluons, in both lower ladders, by P = G.
There are also contributions in which both ladders have a sea-
quark–antiquark pair as the two uppermost t-channel partons.
We denote these contributions by P = S. The flux factor in this
case, fP=S , is given by (7) with g replaced by the sea-quark
density of the proton, S. There are also interference terms in
which one ladder is P = G and the other ladder is P = S. We
denote this contribution by P = GS. The factorisation scale
µ2

F is usually taken to be Q2

integrated gluon distribution of the proton, xPg(xP, µ2),
which is known from global analyses of DIS and related
hard-scattering data.

The evolution of aD is a little subtle. Before we integrate
over themomentum kt – that is, selecting eventswith a fixed
transverse momentum of the lowest parton – we can indeed
see that the scale µ is the lowest possible factorisation
scale for the diffractive parton densities aD. However, for
inclusive DDIS, we must integrate over kt. The integral over
kt translates into an integral over µ, and may be written,
up to a normalisation factor, in the form6

aD =
∫ Q2

µ2
0

dµ2

µ2

1
xP

[
αS

µ
xPg(xP, µ2)

]2
aP. (4)

The term [. . .]2/xP plays the rôle of the pomeron flux, fP,
which occurs in the conventional analyses; see (2) and (3).
At first sight, the integral is concentrated in the infrared
region of low µ. However, for DDIS we consider very small

6 The derivation of the form of (4) is given in Sect. A.1 of
the appendix.
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xP. In this domain the gluon has a large anomalous dimen-
sion. Asymptotically, BFKL predicts xPg(xP, µ2) ∼ (µ2)0.5

for fixed αS [13]. In this case the integral (4) takes a log-
arithmic form, and we cannot neglect the large scale µ
contribution. This complicates the evolution by adding a
non-negligible inhomogeneous term to the DGLAP equa-
tion for the diffractive parton densities aD.

3.2 Inhomogeneous contribution
to the evolution equation for aD

Before we present the evolution equation for DDIS, it is
informative to recall the evolution equation for the par-
ton distributions of the photon, which also contains an
inhomogeneous term. It is of the form [14]

∂q(x, Q2)
∂ lnQ2 =

αS

2π

∫ 1

x

dz

z
Pqq(z) q

(x

z
, Q2

)

+
αeme2

q

2π

∫ 1

x

dz

z
Pqγ(z) γ

(x

z
, Q2

)
, (5)

where, for simplicity, we show only the quark non-singlet
evolution. The right-hand side of the evolution equation
now contains an inhomogeneous term, which acts as an
extra source of quarks produced by the splitting of a point-
like photon. The point-like photon has a distribution of
the form

γ(y, Q2) = δ(1 − y). (6)
Note that, since the photon is point-like, the extra source
is independent of Q2.

We also have an extra source of contributions in the
evolution of the diffractive parton densities, aD, for µ in
the perturbative region. Thus the evolution equation for
aD contains an inhomogeneous term. This term depends
on the scale µ. From (4), we see that the dependence is
described by the factor

fP(xP; µ2) ≡ N

xP

[
αS

µ
xPg(xP, µ2)

]2
, (7)

which specifies the strength of the inhomogeneous source
of partons coming from the component of the pomeron
of size 1/µ. (Our choice of the normalisation factor N is
specified in the appendix; see (A.30).) To be more pre-
cise, we mean partons coming from the component of the
pomeron wave function corresponding to the integration
of the lower parts of the diagram shown in Fig. 3 over lt up
to scale µ. An explicit pQCD calculation [15] shows that
the corresponding splitting functions of this perturbative
pomeron into quarks and gluons are of the form

PqP(β) ∝ β3(1 − β), (8)
PgP(β) ∝ (1 + 2β)2(1 − β)2. (9)

The derivation andnormalisation7 of the splitting functions
(and flux factor fP) are given in the appendix; see (A.31)

7 Of course, only the product of the flux factor and the
splitting functions have a precisely defined normalisation. Our
choice for the normalisation of the separate factors is given in
the appendix.

and (A.58). Differentiating (4) with respect to lnQ2, we
see that the evolution equations for the diffractive parton
densities (aD = βqD, βgD) are

∂aD

∂ lnQ2 =
∫ Q2

µ2
0

dµ2

µ2 fP(xP; µ2)
∂aP

∂ lnQ2

+ fP(xP; µ2) aP(β, Q2; µ2)
∣∣
µ2=Q2

=
∫ Q2

µ2
0

dµ2

µ2 fP(xP; µ2)
αS

2π

∑
a′=q,g

Paa′ ⊗ a′P

+fP(xP; Q2) aP(β, Q2; Q2) (10)

=
αS

2π

∑
a′=q,g

Paa′ ⊗ a′D + fP(xP; Q2) PaP(β).

Here, aP(β, Q2; µ2) are the pomeron parton densities
DGLAP-evolved from a starting scale µ2 up to Q2, from
input distributions aP(β, µ2; µ2) = PaP(β).

If we were to assume that fP were independent of µ2,
as is the case for BFKL asymptotics, then (10) would be
an inhomogeneous DGLAP equation exactly analogous to
that for the photon. The only essential difference would be
the form of the β dependence of the splitting functions PaP.
At first sight this appears strange. The pomeron, unlike
the photon, is an extended object, and we might have
anticipated a form factor dependence fP ∼ 1/(µ2R2

P
). For

such an extreme behaviour, the inhomogeneous term would
be a power correction and could perhaps be neglected in
the evolution equation. However, as xP → 0, the proton
gluon density g(xP, µ2) grows as (µ2)0.5, and compensates
the form factor power-like suppression. The HERA domain
is an intermediate region: the anomalous dimension γ is not
small, but is less than 0.5, with g ∼ (µ2)γ . Thus, although
the integral in (4) is convergent at large µ2, we still cannot
neglect the inhomogeneous term in (10).

The behaviour of the inhomogeneous term can be seen
from Fig. 4, which shows the µ2 dependence of the flux fP

of (7) with N = 1 for three typical HERA values of xP. Of
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Fig. 4. The µ2 dependence of the flux factor fP, given by (7)
with N = 1, for three different values of xP and using the
MRST2001 NLO gluon distribution of the proton [16]



A.D. Martin et al.: Diffractive parton distributions from perturbative QCD 73

course, fP is not constant and dies out with increasing µ2,
but it is still appreciable up to rather large µ2. Therefore,
we cannot neglect the inhomogeneous contribution when
we describe HERA diffractive data with Q2 ∼ 10–50 GeV2.
Typically the perturbative contribution, from scales µ >
µ0 ∼ 1 GeV, is found [7] to be responsible for about half or
more of the DDIS HERA data, depending on the value of
β. Moreover, it is seen from Fig. 4 that, even for very large
Q2, DDIS factorisation must be modified when working
with input scales µ2

0 less than about 10–50 GeV2. Also,
note that the convergence of the µ2 integral decreases with
decreasing xP.

In practice, rather than to solve the inhomogeneous
equation (10) directly, it is more convenient to use a sep-
arate standard homogeneous DGLAP equation for each
component µ of the pomeron. Then we can sum up (that
is, integrate over µ) the different µ2 contributions, in which
the standard DGLAP evolution of each component starts
from its own scale µ, provided that µ is in the pQCD domain
(µ > µ0), and continues up to the (collinear) factorisation
scale µF. The contribution coming from µ < µ0 must be
treated non-perturbatively. This component of the diffrac-
tive densities aD is included in the starting distributions
at µ0 whose parameters are obtained by fitting to data.

4 Factorisation in DDIS
and sub-asymptotic effects

From the formal viewpoint, for any fixed xP, the inhomo-
geneous term in the evolution equation (10) for aD dies out
as Q2 → ∞. Thus if we evolve from a large enough starting
scale, µS, we are entirely in the perturbative regime and
the diffractive parton densities, aD, are described by the
usual (homogeneous) DGLAP equations and satisfy the
collinear factorisation theorem, just like the parton densi-
ties for DIS whose factorisation was described in Sect. 2.
The factorisation theorem for DDIS was proved in [4].

However, this is not true in the HERA domain, and in
this section we emphasise those places where a more pre-
cise treatment of diffractive parton densities is necessary.
Nevertheless, universal diffractive parton distributions can
still be obtained from analysing DDIS data, provided that
care is taken in the analysis.

4.1 Inclusion of the inhomogeneous term
and the effect on gD

For a low starting scale µS, but still satisfying µS � ΛQCD,
we can no longer omit the inhomogeneous term in the evolu-
tion (10) of the diffractive parton densities, aD. One conse-
quence is that we will obtain a smaller diffractive gluon den-
sity gD. Indeed, it is known from the global analyses of DIS
data that the gluon is mainly driven by ∂F2/∂ lnQ2 ∼ αS g.
However, for DDIS, the perturbative pomeron contribution
to F

D(3)
2 is [7]

F
D(3)
2,pert.(xP, β, Q2) (11)

=
∫ Q2

µ2
0

dµ2

µ2 fP(xP; µ2)F P

2 (β, Q2; µ2)

=⇒ ∂F
D(3)
2,pert.

∂ lnQ2

=
∫ Q2

µ2
0

dµ2

µ2 fP(xP; µ2)
∂F P

2 (β, Q2; µ2)
∂ lnQ2

+fP(xP; Q2)F P

2 (β, Q2; Q2). (12)

Here, F P

2 (β, Q2; µ2) is the pomeron structure function, eval-
uated from the DGLAP-evolved pomeron parton densities
aP(β, Q2; µ2). The first term of (12) behaves roughly as
αS gD. Therefore, part of the derivative ∂F

D(3)
2 /∂ lnQ2

comes from the upper limit Q2 of the integral over the
pomeron scale µ, and so this results in a smaller diffractive
gluon density than if the second term of (12) was neglected.

4.2 Heavy quark contributions

To be specific we consider the contributions of the charm
quark, c. For moderate Q2 it is convenient to use the
fixed flavour number scheme, where the charm contribu-
tion arises from photon–gluon fusion γ∗gP → cc̄. However,
in this case we will miss the diagram where the pomeron
directly produces the c quark, that is, when c is the lowest
parton k̃ in the upper ladder of Fig. 3. In this case there is
no evolution and no factorisation. This contribution should
be added separately.

At high Q2 the difference between light and heavy
quarks disappears. Then we should use a variable flavour
number scheme, where a diffractive charm density is intro-
duced at scales above the charm threshold.

Here is a good place to emphasise the difference between
the pomeron densities aP and the t-channel content of the
pomeron. Already in the charm example above, we see that
although the pomeron is built up only of gluons; it produces
not only gluons, but also light and heavy quarks.

In analogy to heavy quark production, the direct cou-
pling of the perturbative pomeron has to be included in
the description of high ET dijets in DDIS. Again, this
cannot be described purely as a convolution of aD with a
“hard” matrix element. This direct contribution should be
added separately.

4.3 Twist-four contributions in DDIS

From (8) and (9), we see that the leading-twist splitting
functions vanish as β → 1. For large β and the Q2 values
typical at HERA, we cannot neglect the twist-four F

D(3)
L

contribution, which goes to a constant value as β → 1.
This contribution was calculated in [15], and turns out to
be numerically appreciable. Moreover, it dies out with in-
creasing Q2 rather slowly since the extra 1/Q2 twist-four
suppression is partly compensated by the sizeable anoma-
lous dimension γ of the gluon; recall [g(xP, Q2)]2 ∼ (Q2)2γ .
This twist-four contribution goes beyond the leading twist-
two approximation. It is described by its own twist-four
evolution and coefficient functions.
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Fig. 5. The behaviour of the gluon and sea-quark distributions
at Q2 = 2 GeV2 found in the CTEQ6.1M [17] and MRST2004
NLO [18] global analyses. The valence-like behaviour of the
gluon is evident

5 The sea-quark component of the pomeron

So far we have taken the pomeron to be a parton ladder
where the two uppermost t-channel partons are gluons.
However, at small scales µ2, the gluon densities have a
valence-like structure. They decrease with decreasing x
already from x ∼ 0.01 for µ2 ∼ 2 GeV2; see Fig. 5. On the
other hand, the sea-quark density S = 2(ū+d̄+s̄) increases
as xS ∼ x−0.2 with decreasing x. As a consequence we have
to include another contribution to the pomeron in which
the two uppermost t-channel partons in the lower ladders
in Fig. 3 are a sea-quark–antiquark pair. Thus we must
introduce a sea-quark pomeron flux fP=S given by (7) with
xPg replaced by xPS. To avoid confusion we denote the flux
in (7) by fP=G. In general, the two lower ladders in Fig. 3,
shownas gluon ladders, contain both quarks andgluons. For
a gluonic pomeron (P = G) or a sea-quark pomeron (P = S)
the two uppermost partons in the ladders are gluons or
sea quarks respectively. In addition, we must include the
interference contribution coming from one P = G ladder
and one P = S ladder in Fig. 3. We denote this contribution
by P = GS.

We present the calculation of all the LO pomeron-to-
parton splitting functions in the appendix. The calcula-
tion of the splitting functions for the gluonic pomeron (see
Pq,P=G and Pg,P=G of (8) and (9) respectively) already
exist8 in the literature [15], but those for the sea-quark
pomeron are derived for the first time.9 They have the forms

Pq,P=S(β) ∝ β(1 − β), (13)
Pg,P=S(β) ∝ (1 − β)2; (14)

see (A.71) and (A.84) of the appendix. In addition, there
are interference contributions between the gluonic pomeron
and the sea-quark pomeron, which we label by the notation
P = GS. These splitting functions have the forms

Pq,P=GS(β) ∝ β2(1 − β), (15)

8 Here we clarify certain factors of 2.
9 These forms were used in the analyses of [7, 8].
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Fig. 6. The perturbative (P = G,S, and the GS interference)
and non-perturbative contributions to F

D(3)
2 , for two sets of xP,

β, and Q2 values, found in the analysis of HERA DDIS data
in [7]. The plots show the µ2 dependence of the perturbative
contributions; their integral over µ2 is shown by the numbers
in parentheses in the legend

Pg,P=GS(β) ∝ (1 − β)2(1 + 2β); (16)

see (A.89) and (A.96) of the appendix.

6 pQCD analysis of DDIS data

The pQCD approach described above has been used to
analyse the new HERA DDIS data [7]. A good description
of both the ZEUS and H1 data was obtained. The plots in
Fig. 6 show the separate non-perturbative and perturba-
tive (P = G,S, and the GS interference) contributions to
F

D(3)
2 , for two sets of values of xP, β, and Q2. The num-

bers in brackets in Fig. 6 show the total contribution of
the different components starting from µ0 = 1 GeV; and
correspond in the perturbative cases to taking the integral
over µ2. We see, first, that the perturbative contribution is
significant and sometimes dominant and, second, that the
modifications of DDIS factorisation are important, that is,
the inhomogeneous term in the evolution equation plays a
crucial rôle.

It is informative to study the various contributions
to ∂F

D(3)
2 /∂ lnQ2 in some detail, since this is the quan-

tity which mainly drives the behaviour of the diffractive
gluon distribution. Recall that in the global analyses of
inclusive DIS data, the small-x gluons are extracted using
DGLAP evolution in which ∂F2/∂ lnQ2 ∼ αS g. As we
have mentioned, in DDIS, the derivative ∂F

D(3)
2 /∂ lnQ2

contains an additional contribution arising from the inho-
mogeneous term; see (12). In Fig. 7 we show the β depen-
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Fig. 7. The breakdown of the contributions to the description
of the slope ∂F

D(3)
2 /∂ ln Q2 as a function of β, for Q2 = 15 GeV2

and xP = 0.003 obtained in the MRW analysis [7] of the com-
bined ZEUS and H1 DDIS data, which uses MRST2001 NLO
partons [16] to calculate the perturbative pomeron flux

dence of the lnQ2 derivative of F
D(3)
2 , for xP = 0.003 and

Q2 = 15 GeV2, obtained in the recent MRW analysis [7]
which takes µ0 = 1 GeV. From this figure, we see that
the major contribution to ∂F

D(3)
2 /∂ lnQ2 comes from the

first term in (12), that is, the perturbative DGLAP con-
tribution for µ > µ0 given by the dotted curve. The non-
perturbative contribution coming from µ < µ0 is rather
small for β � 0.5. The contribution corresponding to the
differentiation of the upper limit of the µ2 integral, that
is, the second term in (12), is shown by the short dashed
line. Clearly it is not negligible. The twist-four (FD(3)

L )
contribution is important, as expected, for large β, and
the contribution from the secondary reggeon at this small
value of xP is practically invisible. In summary, we see that
the slope for β � 0.2 is dominated by the perturbative
DGLAP contribution, and for β � 0.8 by the twist-four
F

D(3)
L contribution, while for β ∼ 0.5 the inhomogeneous

contribution is largest. In any complete analysis of DDIS
data, it is clear that the inhomogeneous term must be taken
into account.

7 Discussion

The QCD analysis of diffractive structure functions is sub-
tle. To clarify the situation it may be helpful to pursue
the analogy with the parton distributions of the photon.
The evolution can be expressed in two alternative forms. In
the first form, the DGLAP evolution (5) of the parton dis-
tributions of the photon includes an inhomogeneous term
arising from the direct splitting of a point-like photon into
a qq̄ pair. This splitting may take place at any current scale.
An alternative way to account for this effect is to treat the
photon as a parton, and to consider homogeneous DGLAP
equations which embrace the evolution of the gluon and
quark distributions, together with that of the photon itself.
For such a photon density we have the trivial distribution
γ = δ(1−x), but now the inhomogeneous term is embodied

in the enlarged set of homogeneous DGLAP equations for
q, g together with γ. The advantage of the latter approach
is that, in such a form, we have enlarged the subspace where
the factorisation theorem applies. We can now factor off
the matrix element of the hard subprocess i+j → X where
i, j = q, g, or γ. Thus we have the possibility of the photon
directly participating in the hard interaction.

In the case of the diffractive parton distributions, we
have a very similar situation to that of the parton densities
of the photon. The DGLAP evolution contains an inhomo-
geneous contribution arising from the pomeron-to-parton
splitting, as given by the last term in (10). In the Q2 → ∞
limit, and at fixed xP, due to the 1/Q2 factor explicit in
fP, this may be treated as a power correction and safely
neglected. Then the DDIS factorisation theorem is valid.
However, for small xP, the parton densities increase rapidly
with increasing Q2, partly neutralising the power suppres-
sion of the inhomogeneous pomeron-induced term. As a
consequence we must retain the inhomogeneous term, and
we are forced to reject the attractive postulate that DDIS
factorisation [4] holds down to low scales.10

Since, in practice, it is easier to work with homoge-
neous DGLAP equations, we can proceed in one of two
ways. First, just as in the photon case, we may treat the
pomeron as an extra parton, and enlarge the set of DGLAP
equations to include fP, as well as qD and gD. We denote
the pomeron density as fP to be consistent with our pre-
vious notation. The extra terms PqPfP and PgPfP in the
homogeneous DGLAP equations for qD and gD involve the
pomeron-to-parton splitting functions. Moreover, just as
in the photon case, to calculate the cross section we have to
include the direct pomeron coupling to the hard subprocess
(see Sect. 4.2 for an example). In this approach the effective
pomeron distribution fP is now described by the pomeron
flux fP ≡ fP=G of (7), together with the corresponding flux
fP=S for the sea-quark component of the pomeron, and the
P = GS interference term. Recall that the inclusive parton
densities of the proton, xPg and xPS, which occur in these
fluxes, satisfy their own DGLAP evolution equations.

Equally well, the inhomogeneous DGLAP evolution of
diffractive parton densities could be accomplished in an
alternative way. We may sum up the parton densities given
bya series of homogeneousDGLAPequationswithdifferent
values of the starting scale µ. Suppressing the xP and β
dependence, the general structure is

aD(µF; µ0) (17)

= aD
non-pert.(µF; µ0) +

∫ µ2
F

µ2
0

dµ2

µ2 fP(µ2) aP(µF; µ),

where aP(µF; µ) results from DGLAP evolution up to µF
starting from the input aP(µ; µ) = PaP(β). The non-pertur-
bative term, aD

non-pert., is exactly analogous to the procedure
used in the Regge factorisation analysis described in Sect. 1,
but with αP(0) fixed at the “soft” value of 1.08 [6]. The

10 This postulate is the basis of the description of DDIS that is
presented in [19]. We thank Paul Hoyer for clarifying discussions
concerning this work.
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important new ingredient is the pQCD contribution given
by the second term on the right-hand side of (17), which
has contributions from the gluonic and sea-quark pomeron
(P = G,S), and their interference (P = GS). Setting µF =
Q, it is clear that (17) satisfies the inhomogeneous evolution
equation (10).

In summary, we have shown how to obtain universal
diffractive parton densities aD which can be used in the
description of different diffractive processes. Of course, for
diffractive production in high-energy hadron–hadron col-
lisions, we have to take care that the rapidity gaps are not
populated by secondaries produced during the soft inter-
action of spectators. This well-known rapidity gap survival
factor, usually denoted by S2 [20], may be calculated from
phenomenological models tuned to describe elastic and re-
lated “soft” hadron–hadron processes [21,22].

In addition to the hard subprocesses originating from
the collision of quarks and gluons from the resolved
pomeron, we must also include the contribution where the
perturbative pomeron directly participates in the hard in-
teraction. In particular, the calculation in the appendix
of the cross section for diffractive open charm production
may be treated as the coefficient function for γ∗

P → cc̄ in
the fixed flavour number scheme.
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Appendix A: The gg and qq̄ pomeron in pQCD

In this appendixwe compute the lowest-order Feynmandia-
grams which give the β dependence of the quark singlet and
gluon starting distributions of the perturbative pomeron,
ΣP(β, µ2; µ2) and gP(β, µ2; µ2). Here, the quark singlet dis-
tribution ΣP = uP+dP+sP+ūP+d̄P+s̄P, with all six quark
densities of the pomeron equal to each other. In Sect. A.1 we
compute ΣP=G and gP=G assuming that the QCD pomeron
is made from two t-channel gluons. Wherever possible, we
check our results with those of Wüsthoff [15] in the limit of
massless quarks and with [23] in the case of massive quarks;
see also the original work of [24]. Then in Sect. A.2 we ex-
tend the formalism to calculate ΣP=S and gP=S assuming
that the pomeron is represented by a t-channel sea-quark–
antiquark pair. Finally, in Sect. A.3 we calculate ΣP=GS

and gP=GS resulting from the interference between the glu-
onic pomeron and the sea-quark pomeron. As explained
in the main text, the starting distributions, ΣP(β, µ2; µ2)
and gP(β, µ2; µ2), can be thought of as pomeron-to-parton
splitting functions, PqP and PgP respectively.

k
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p

l⊥l⊥ + xIPp

q q − k

k̃

p′

(a)

γ∗

p

l⊥l⊥ + xIPp

q

k

p′

q − k

k̃

(b)

Fig. 8. a Quark dipole and b effective gluon dipole interacting
with the proton via a perturbative pomeron represented by two
t-channel gluons

We will work in the leading logarithmic approximation
(LLA) to derive the factorised form of (11):

F
D(3)
2,pert.(xP, β, Q2) =

∫ Q2

µ2
0

dµ2

µ2 fP(xP; µ2) F P

2 (β, Q2; µ2).

(A.1)
Higher order corrections (for example, to NLO accuracy)
may be incorporated by considering proton and pomeron
parton densities satisfying NLO DGLAP evolution, by us-
ing the NLO coefficient functions to calculate F P

2 , and by
computing O(αS) corrections to the pomeron-to-parton
splitting functions. However, note that the factorised struc-
ture of (A.1) persists even at NLO (and beyond).

A.1 Two-gluon exchange (P = G)

First we consider the kinematics of the quark dipole shown
in Fig. 8a. We use a Sudakov decomposition of the momen-
tum k of the off-shell quark,

k = α q′ + βk p + k⊥, (A.2)
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with q′ ≡ q + xB p, q′2 = 0 = p2, k2
⊥ = −k2

t . The two
outgoing components of the dipole have momenta

q − k = (1 − α) q′ + xB
(k2

t + m2
f )/Q2

1 − α
p − k⊥, (A.3)

k̃ = k + xP p = α q′ + xB
(k2

t + m2
f )/Q2

α
p + k⊥, (A.4)

where the on-shell conditions, (q − k)2 = m2
f and k̃2 =

m2
f , determine

βk = −xB

(
1 +

(k2
t + m2

f )/Q2

1 − α

)
,

xP = xB

(
1 +

(k2
t + m2

f )/Q2

α(1 − α)

)
. (A.5)

The invariant mass of the qq̄ system is given by

M2
X = (q + xP p)2 =

k2
t + m2

f

α(1 − α)
. (A.6)

The kinematic limit occurs when α = 1/2, giving a maxi-
mum value for k2

t of M2
X/4−m2

f . Since β = Q2/(Q2+M2
X),

(A.6) can be written as

α(1 − α)Q2 = β
k2
t + m2

f

1 − β
≡ βµ2, (A.7)

where the last equivalence specifies our choice of factori-
sation scale µ. The off-shell quark with momentum k in
Fig. 8a has virtuality given by

k2 − m2
f = − µ2

1 − α

 −µ2, (A.8)

sinceα � 1 in the approximation of strongly-ordered trans-
verse momentum, µ2 � Q2, to which we are working.11

A.1.1 Quark dipole with a transversely polarised photon

The differential γ∗p cross section corresponding to Fig. 8a
is given by a kt-factorisation formula. It can be written
in terms of photon wave functions Ψ(α,kt), describing the
fluctuation of the photon into a quark–antiquark dipole,
convoluted over α and kt with a dipole cross section σ̂,
describing the interaction of the dipole with the proton via
two-gluon exchange. The dipole factorisation formula for
Fig. 8a with a transversely polarised photon is

dσγ∗p
T,qq̄

dt

∣∣∣∣∣
t=0

=
NC

16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem (A.9)

× 1
2

∑
γ,h,h′=±1

∣∣∣∣
∫

d2lt
π

DΨγ
hh′

dσ̂

dl2t

∣∣∣∣
2

,

11 Actually, from (A.7), µ2 � Q2 implies either α � 1 or
(1 − α) � 1, but it is conventional to take the former.

where the qq̄ dipole wave functions, Ψγ
hh′ , and the operation

D are specified below. This formula for diffractive DIS may
be compared to the corresponding result for inclusiveDIS,12

σγ∗p
T,qq̄ = NC

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem

× 1
2

∑
γ,h,h′=±1

∫
d2lt

π
|Ψγ

hh′(α,kt) − Ψγ
hh′(α,kt + lt)|2

× dσ̂

dl2t
. (A.10)

The light-cone wave functions for the quark–antiquark
dipole with a transversely polarised photon are [15,23]

Ψγ
hh′(α,kt) =

δh,−h′ [(1 − 2α)h − γ] εγ · kt + δhh′ mf h

k2
t + m2

f + α(1 − α)Q2 ,

(A.11)
where γ, h, and h′ denote the helicities of the photon, quark,
and antiquark, respectively. Here, kt ≡ k1

t +i k2
t = (k1

t , k
2
t )

and the circular polarisation vectors of the photon are
εγ = (1, γ)/

√
2. The denominator of these wave functions

is the virtuality of the off-shell quark with momentum k:

k2
t +m2

f +α(1−α)Q2 = (1−β)µ2 +βµ2 = µ2 
 |k2 −m2
f |.

(A.12)
Note that the wave functions are symmetric under α →
(1 − α) and kt → −kt, corresponding to q ↔ q̄, that is,
(A.3) ↔ (A.4), so we only need to sum over flavours in
(A.9) and not over quarks and antiquarks separately.

The four different permutations of the couplings of the
two t-channel gluons to the two components of the quark
dipole, shown in Fig. 9a, are obtained by simply shifting
the argument of the wave function:

DΨ(α,kt, lt) (A.13)
≡ 2Ψ(α,kt) − Ψ(α,kt + lt) − Ψ(α,kt − lt).

We choose a basis where kt = kt (1, 0) and lt = lt (cos φ,
sin φ) and neglect the xP p components of the momenta. We
work in the approximation of strongly-ordered transverse
momenta, lt � µ � Q, and expand DΨ in the limit lt → 0,
only keeping the leading term proportional to l2t . After
performing the azimuthal integral, we find∫ 2π

0

dφ

2π
DΨγ

hh′(α,kt, lt)

=
l2t[

k2
t + m2

f + α(1 − α)Q2
]3

×{4[α(1 − α)Q2 + m2
f ]

×δh,−h′ [(1 − 2α)h − γ] εγ · kt (A.14)
+ 2 δhh′ mf h [α(1 − α)Q2 + m2

f − k2
t ]
}

;

cf. (21) of [15]. After changing variables from α and k2
t to

β and µ2 using (A.7), we obtain

∑
γ,h,h′=±1

∣∣∣∣
∫ 2π

0

dφ

2π
DΨγ

hh′(α,kt, lt)
∣∣∣∣
2

12 Note the extra factor 2 in (A.10) compared to (7) of [15].
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Fig. 9. The four different permuta-
tions of the couplings of the two t-
channel gluons to the two components
of a the quark dipole and b the effective
gluon dipole

= l4t
64
µ12

{(
m2

f + βµ2)2 [(1 − β)µ2 − m2
f

]

×
(

1 − 2β
µ2

Q2

)

+m2
f

[
m2

f +
(

β − 1
2

)
µ2
]2}

. (A.15)

The other necessary part of the calculation is the cross
section for qp → qp, which may be obtained from that
for the process qq → qq with t-channel gluon exchange,
shown in Fig. 10a. We assume that k2 
 0 and neglect the
xP p components of the momenta in these calculations. The
qq → qq differential cross section is

dσ̂

d|t̂| (qq → qq) =
|M|2
16πŝ2 , (A.16)

where ŝ = 2 k · p = α Q2/xB 
 µ2/xP and t̂ = −l2t . The
squared matrix element for qq → qq is

|M|2 =
1
4

C g4

l4t
Tr[γµ/kγν(/k + /l⊥)] (A.17)

× Tr[γρ/pγσ(/p − /l⊥)] (−gµρ)(−gνσ),

where the colour factor is

C(qq → qq) =
1

N2
C

Tr[tAtB ] Tr[tAtB ] =
2
9

. (A.18)
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Fig. 10. Cut diagrams giving the dipole cross sections for the
two-gluon pomeron: a qq → qq and b gq → gq

In the high-energy limit, where only the terms to leading
O(|t̂|/ŝ) are retained, that is, in the lt → 0 limit, we have

dσ̂

dl2t
(qq → qq) =

1
l4t

8π
9

αS(l2t )αS(µ2), (A.19)

where appropriate scales for αS have been chosen corre-
sponding to the two different vertices in Fig. 10a. The lower
vertex in Fig. 10a may be considered as the first step of
DGLAP evolution, which generates the unintegrated gluon
distribution of the proton, fg(xP, l2t , µ

2). Therefore, we ob-
tain the cross section for qp → qp by making the replace-
ment

αS(l2t )
2π

xPPgq(xP)
∣∣∣∣
xP�1

=
αS(l2t )

2π
2CF =

4
3π

αS(l2t )

→ fg(xP, l2t , µ
2). (A.20)

This replacement accounts for more complicated diagrams
than Fig. 10a which include the complete DGLAP evolu-
tion, leading to

dσ̂

dl2t
(qp → qp) =

1
l4t

2π2

3
αS(µ2)fg(xP, l2t , µ

2). (A.21)

Combining (A.15) and (A.21) we obtain

∑
γ,h,h′=±1

∣∣∣∣
∫

d2lt
π

DΨγ
hh′

dσ̂

dl2t

∣∣∣∣
2

=
64
µ12 {. . .}

[
2π2

3
αS(µ2)

∫ µ2

0

dl2t
l2t

fg(xP, l2t , µ
2)

]2

=
256π4

9µ12

[
αS(µ2) xPg(xP, µ2)

]2 {. . .} , (A.22)

where g(xP, µ2) is the integrated gluon distribution of the
proton and {. . .} denotes everything inside the curly brack-
ets in (A.15). Strictly speaking, this last expression should
be written in terms of the off-diagonal (or skewed) gluon
distribution of the proton, since the left and right t-channel
gluons in Fig. 8a carry different fractions of the proton mo-
mentum. At small xP, and assuming that xP g(xP, µ2) ∝
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x−λ
P

, then the off-diagonal gluon distribution is given by
the diagonal distribution multiplied by an overall constant
factor [12],13

Rg(λ) =
22λ+3
√

π
Γ (λ + 5/2)
Γ (λ + 4)

. (A.23)

Changing the integration variables in (A.9),

dα dk2
t = dβ dµ2 µ2/Q2√

1 − 4βµ2/Q2
, (A.24)

then integrating (A.9) over t, assuming a t dependence of
the form exp(BD t), gives

σγ∗p
T,qq̄ =

R2
g

BD

NC

16π

∫ 1

0
dβ

∫
dµ2

2π
µ2/Q2√

1 − 4βµ2/Q2

∑
f

e2
f αem

× 1
2

∑
γ,h,h′=±1

∣∣∣∣
∫

d2lt
π

DΨγ
hh′

dσ̂

dl2t

∣∣∣∣
2

. (A.25)

The relation between the diffractive structure function and
the γ∗p cross section is

F
D(3)
2 =

Q2

4π2αem

β

xP

dσγ∗p

dβ
. (A.26)

Thus, on inserting (A.22) into (A.25) we finally obtain

F
D(3)
T,qq̄ =

∑
f

e2
f

∫ Q2

4β

m2
f

1−β

dµ2

µ2

1√
1 − 4βµ2/Q2

1
xPBD

(A.27)

×
[

Rg
αS(µ2)

µ
xPg(xP, µ2)

]2
β

3µ6 {. . .} ,

where again {. . .}denotes everything inside the curly brack-
ets in (A.15). Replacing

∑
f e2

f by e2
c , this equation corre-

sponds to diffractive open charm production; cf. (45) of [23].
We now take the limit of massless quarks, mf → 0

where f = u, d, s, in the approximation where µ2 � Q2.
In this approximation, we can replace the upper limit of the
µ2 integral, Q2/(4β), by Q2. We also need to replace the
lower limit by an infrared cutoff µ2

0. Then (A.27) becomes

F
D(3)
T,qq̄ =

∫ Q2

µ2
0

dµ2

µ2

1
xPBD

[
Rg

αS(µ2)
µ

xPg(xP, µ2)
]2

×〈e2
f 〉β3(1 − β), (A.28)

where 〈e2
f 〉 ≡

(∑
f e2

f

)
/nf (with nf = 3), which coincides

with (22) of [15]. We can write this expression as

F
D(3)
T,qq̄ =

∫ Q2

µ2
0

dµ2

µ2 fP=G(xP; µ2) F P=G
T (β, µ2; µ2), (A.29)

13 This factor is not seen in calculating Fig. 10a since it is
absent in the limit xP → 0 [25].

where the “pomeron flux factor” is14

fP=G(xP; µ2) =
1

xPBD

[
Rg

αS(µ2)
µ

xPg(xP, µ2)
]2

,

(A.30)
and the “pomeron structure function” at a scale µ origi-
nating from a component of the pomeron of size 1/µ is

F P=G
T (β, µ2; µ2) = 〈e2

f 〉 βΣP=G(β, µ2; µ2)

= 〈e2
f 〉 β3(1 − β). (A.31)

Recall that the notation P = G is used to indicate that
the perturbative pomeron is represented by two t-channel
gluons. The quark singlet density (A.31) can be taken as
the initial condition at a scale µ2, together with the corre-
sponding gluon density (A.58), for DGLAP evolution up to
Q2, giving ΣP=G(β, Q2; µ2) and gP=G(β, Q2; µ2); see Fig. 3.
In this context, βΣP=G(β, µ2; µ2) can be regarded as the
pomeron-to-quark splitting function, Pq,P=G(β); see (8).

A.1.2 Quark dipole with a longitudinally polarised photon

The dipole factorisation formula for Fig. 8a with a longi-
tudinally polarised photon is

dσγ∗p
L,qq̄

dt

∣∣∣∣∣
t=0

=
NC

16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem

×
∑

h,h′=±1

∣∣∣∣
∫

d2lt
π

DΨγ=0
hh′

dσ̂

dl2t

∣∣∣∣
2

, (A.32)

where the light-conewave functions for the quark–antiquark
dipole with a longitudinally polarised photon are [15,23]

Ψγ=0
hh′ (α,kt) =

2α(1 − α)Q
k2
t + m2

f + α(1 − α)Q2 δh,−h′ . (A.33)

Taking the limit lt → 0 of the combination ofwave functions
(A.13) and performing the azimuthal integral gives15

∫ 2π

0

dφ

2π
DΨγ=0

hh′ (α,kt, lt) (A.34)

= l2t
α(1 − α)Q2 + m2

f − k2
t[

k2
t + m2

f + α(1 − α)Q2
]3 4α(1 − α)Q δh,−h′ .

Squaring this expression and summing over the quark he-
licities gives

∑
h,h′=±1

∣∣∣∣
∫ 2π

0

dφ

2π
DΨγ=0

hh′ (α,kt, lt)
∣∣∣∣
2

14 Note that this definition differs slightly from that given
in [7,8]. Since only the combination (A.29) matters, we are free
to redistribute factors of µ and constants as we please.
15 Note the extra factor 2 in (A.34) compared to (21) of [15].
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= l4t
32
µ6

µ2

Q2 β2

(
2β − 1 +

2m2
f

µ2

)2

. (A.35)

The dipole cross section, dσ̂/dl2t (qp → qp), is the same as
(A.21), giving

F
D(3)
L,qq̄ =

∑
f

e2
f

∫ Q2

4β

m2
f

1−β

dµ2

µ2

1√
1 − 4βµ2/Q2

µ2

Q2

1
xPBD

×
[

Rg
αS(µ2)

µ
xPg(xP, µ2)

]2

×β3

3

(
2β − 1 +

2m2
f

µ2

)2

, (A.36)

which corresponds to diffractive open charm production,
cf. (44) of [23], after replacing

∑
f e2

f by e2
c . As before

we take the limit of massless quarks in the approximation
where µ2 � Q2, then

F
D(3)
L,qq̄ =

Q2

4π2αem

β

xP

dσγ∗p
L,qq̄

dβ
(A.37)

=

(∫ Q2

µ2
0

dµ2

µ2

µ2

Q2 fP=G(xP; µ2)

)
F P=G

L (β),

where F P=G
L (β) = 〈e2

f 〉 β3 (2β − 1)2; this result is a factor
2 different from (23) of [15], but is in agreement with [23].
Note that this contribution to F

D(3)
2 is twist-four due to

the extra factor µ2/Q2 with respect to (A.29). Here we
include only this main extra 1/Q2 dependence, and omit
the O(αS) anomalous dimension arising from twist-four
DGLAP evolution.

A.1.3 Gluon dipole with a transversely polarised photon

Now consider the kinematics of the qq̄g system shown in
Fig. 8b. Although this diagram has an extra factor αS with
respect to the qq̄ system shown in Fig. 8a, it is known to be
dominant at large MX (small β) due to t-channel spin-1
gluon exchange. Using a Sudakov parameterisation (A.2)
of the momentum k of the off-shell gluon gives the momenta
of the outgoing qq̄ pair and gluon as

q − k = (1 − α) q′ +
xB

Q2

k2
t + M2

qq̄

1 − α
p − k⊥, (A.38)

k̃ = k + xP p = α q′ + xB
k2
t /Q2

α
p + k⊥, (A.39)

respectively, where Mqq̄ is the invariant mass of the qq̄
system. Again the on-shell conditions, (q −k)2 = M2

qq̄ and
k̃2 = 0, determine

βk = −xB

(
1 +

k2
t + M2

qq̄

(1 − α)Q2

)
,

xP = xB

(
1 +

k2
t + αM2

qq̄

α(1 − α)Q2

)
. (A.40)

The invariant mass of the qq̄g system is given by

M2
X = (q + xP p)2 =

k2
t + αM2

qq̄

α(1 − α)
. (A.41)

The maximum value of k2
t occurs when

α = (1 − M2
qq̄/M

2
X)/2,

giving an upper limit for k2
t of

k2
t =

M2
X

4

(
1 − M2

qq̄

M2
X

)2

. (A.42)

Defining the (light-cone) fraction of the pomeron’s mo-
mentum carried by the gluon with momentum k̃ in Fig. 8b
to be

β̃ =
(

xB
k2
t /Q2

α

)
/xP, (A.43)

then the off-shell gluon with momentum k in Fig. 8b has vir-
tuality

k2 = −k2
t /β̃ ≡ −µ2. (A.44)

Referring to Fig. 3, the same kinematics hold if we now
replace Mqq̄ by the invariant mass of all the emitted partons
above the one labelled k̃ in Fig. 3.

The qq̄g calculation is greatly simplified in the approxi-
mation Mqq̄ � Q, in addition to assuming strongly-ordered
transverse momenta, lt � kt � Q. In this limit, the kine-
matics of the (qq̄)g system is identical to the previously
considered qq̄ system of Fig. 8a in the case of massless
quarks. The emitted (qq̄) pair is localised in impact pa-
rameter space, and forms an effective “gluon” conjugate
in colour to the emitted gluon. The (qq̄)g system can thus
be considered as forming an effective gg dipole. This argu-
ment generalises if the (qq̄) pair is replaced by the emitted
partons above the one labelled k̃ in Fig. 3, all of which are
strongly ordered in transverse momentum [9,11].

The dipole factorisation formula forFig. 8bwith a trans-
versely polarised photon is then

dσγ∗p
T,gg

dt

∣∣∣∣∣
t=0

=
N2

C − 1
16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem

×
∑

m,n=1,2

∣∣∣∣
∫

d2lt
π

DΨmn dσ̂

dl2t

∣∣∣∣
2

. (A.45)

Again there are four different permutations of the couplings
of the two gluons to the two components of the effective
gluon dipole, shown in Fig. 9b, which are obtained by shift-
ing the argument of the wave function as in (A.13). The
light-cone wave functions for the effective gluon dipole with
a transversely polarised photon are [15]

Ψmn(α,kt) =
1√

α(1 − α)Q2

k2
t δ

mn − 2km
t kn

t

k2
t + α(1 − α)Q2 ,
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m, n = 1, 2. (A.46)

Taking the limit lt → 0 of DΨmn and performing the
azimuthal integral gives∫ 2π

0

dφ

2π
DΨmn(α,kt, lt)

= l2t
2k2

t√
α(1 − α)Q2

3α(1 − α)Q2 + k2
t

[k2
t + α(1 − α)Q2]3

×
(

δmn − 2km
t kn

t

k2
t

)
; (A.47)

cf. (24) of [15]. Squaring this expression and summing over
the indices m, n = 1, 2 gives

∑
m,n=1,2

∣∣∣∣
∫ 2π

0

dφ

2π
DΨmn(α,kt, lt)

∣∣∣∣
2

= l4t
8
µ6 (1 − β)2(1 + 2β)2

1
β

. (A.48)

Thedipole cross section for gp → gp is obtained fromthe
scattering process gq → gq with t-channel gluon exchange,
shown in Fig. 10b. Here, the squared matrix element is

|M|2

=
1
4

C g4

l4t
Tr[/pγγ(/p − /l⊥)γδ]

×dµσ(k, p) dνρ(k + l⊥, p) (−gαγ) (−gβδ) (A.49)
× [(2k + l⊥)αgµν − (k + 2l⊥)µgνα + (l⊥ − k)νgµα]
× [(2k + l⊥)βgρσ − (k + 2l⊥)σgρβ + (l⊥ − k)ρgσβ

]
,

where the transverse polarisations of the incoming and
outgoing gluons are summed in a light-cone gauge,

dµσ(k, p) ≡ −gµσ +
kµpσ + pµkσ

p · k
, (A.50)

and where the colour factor is

C(gq → gq) =
1

NC

1
(N2

C − 1)
fABCfABD Tr[tCtD] =

1
2

.

(A.51)
In the high-energy limit, where only the terms to leading
O(ŝ/|t̂|) are retained, that is, in the lt → 0 limit,

dσ̂

dl2t
(gq → gq) =

1
l4t

2παS(l2t )αS(µ2), (A.52)

where appropriate scales for αS have been chosen corre-
sponding to the two different vertices in Fig. 10b. As before,
we obtain the cross section for gp → gp by making the re-
placement (A.20), which gives

dσ̂

dl2t
(gp → gp) =

1
l4t

3π2

2
αS(µ2)fg(xP, l2t , µ

2). (A.53)

Inserting (A.48) and (A.53) into (A.45), and accounting
for the skewed effect, the change of integration variables
from (α, k2

t ) to (β, µ2), and the t dependence, we obtain

dσγ∗p
T,gg

dβ

=
4π2αem

Q2

∫ Q2

µ2
0

dµ2

µ2

1
BD

[
Rg

αS(µ2)
µ

xPg(xP, µ2)
]2

×
∑

f

e2
f

9
8

(1 − β)2(1 + 2β)2
1
β

. (A.54)

We must account for the fact that the off-shell gluon
with momentum k in Fig. 8b does not interact directly
with the photon, but first splits into a quark–antiquark
pair forming the effective “gluon” of the dipole. To do this,
we replace β → β′ in the previous formula and include the
DGLAP splitting for g → qq̄, that is,

dσγ∗p
T,(qq̄)g

dβ
=

αS(Q2)
2π

ln
(

Q2

µ2

)∫ 1

β

dβ′

β′ Pqg

(
β

β′

) dσγ∗p
T,gg

dβ′ .

(A.55)
Putting everything together, we finally obtain

F
D(3)
T,(qq̄)g =

Q2

4π2αem

β

xP

dσγ∗p
T,(qq̄)g

dβ
(A.56)

=
∫ Q2

µ2
0

dµ2

µ2 fP=G(xP; µ2) F P=G
T (β, Q2; µ2),

where

F P=G
T (β, Q2; µ2) = 〈e2

f 〉βΣP=G(β, Q2; µ2)

= 2
∑

f

e2
f

αS(Q2)
2π

ln
(

Q2

µ2

)
β

∫ 1

β

dβ′

β′2 Pqg

(
β

β′

)

×β′gP=G(β′, µ2; µ2), (A.57)

with

β′gP=G(β′, µ2; µ2) =
9
16

(1 − β′)2(1 + 2β′)2. (A.58)

Note the extra factor 2 compared to (25) of [15] (this was
corrected in a later paper [26]). We take (A.58) at a scale µ2,
which can be interpreted as the pomeron-to-gluon splitting
function Pg,P=G (9), as the initial condition for DGLAP
evolution up to Q2.

A.2 Two-quark exchange (P = S)

We now calculate the lowest-order Feynman diagrams for
the case in which pomeron exchange is represented by a t-
channel sea-quark–antiquark pair, rather than two gluons.
The quark dipole and effective gluon dipole interacting with
this two-quark pomeron are shown in Fig. 11. The light-
cone wave functions of the photon, Ψ(α,kt), are the same as
those given in Sect. A.1. The two different permutations of
the couplings of the two sea quarks to the two components
of the dipole, shown in Fig. 12, are obtained with

DΨ(α,kt) ≡ 2Ψ(α,kt), (A.59)

that is, there are no terms with a shifted argument, unlike
for the two-gluon pomeron. Since there is no lt depen-
dence here, the integrals over lt in the dipole factorisation
formulae can be done immediately.
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(a)
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l⊥l⊥ + xIPp

q
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q − k

p′

k̃

(b)

Fig. 11. a Quark dipole and b effective gluon dipole interacting
with the proton via a perturbative pomeron represented by two
t-channel sea quarks

q − k
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q q − k
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q

k
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k q − k
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γ∗

q − kq q − k

γ∗

q

k

k

k
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Fig. 12. The two different permutations of the couplings of
the two t-channel sea quarks to the two components of a the
quark dipole and b the effective gluon dipole

p p

ρ, B σ, B
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k
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ρ, B σ, B
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k

(a) (b)

Fig. 13. Cut diagrams giving the dipole cross sections for the
two-quark pomeron: a qq → gg and b gq → qg

A.2.1 Quark dipole with a transversely polarised photon

The dipole factorisation formula for Fig. 11a with a trans-
versely polarised photon is

dσγ∗p
T,qq̄

dt

∣∣∣∣∣
t=0

(A.60)

=
NC

16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem

1
2

∑
h,h′,γ=±1

|DΨγ
hh′ |2 σ̂2,

where ∑
γ,h,h′=±1

|DΨγ
hh′(α,kt)|2 (A.61)

=
16
µ4

{[
(1 − β)µ2 − m2

f

](
1 − 2β

µ2

Q2

)
+ m2

f

}
.

The dipole cross section for qp → gp is obtained from
the scattering process qq → gg with t-channel sea-quark
exchange, shown in Fig. 13a. Here, the squared matrix el-
ement is

|M|2 =
1
4

C g4

l4t
Tr[γµ/kγν/l⊥γσ/pγρ/l⊥] (A.62)

×dµν(k + l⊥, p)dρσ(p − l⊥, k),

where the colour factor is

C(qq → qq) =
1

N2
C

Tr[tAtAtBtB ] =
16
27

. (A.63)

In the high-energy limit, where only the terms to leading
O(ŝ/|t̂|) are retained,

dσ̂

dl2t
(qq → gg) =

1
l2t

32π
27

xP

µ2 αS(l2t )αS(µ2). (A.64)

Note that this expression is suppressed by an extra fac-
tor O(|t̂|/ŝ) compared to the t-channel gluon exchange
processes considered in Sect. A.1, where ŝ 
 µ2/xP and
t̂ = −l2t . We obtain the cross section for qp → gp by mak-
ing the replacement

αS(l2t )
2π

xPPqq(xP)
∣∣∣∣
xP�1

=
αS(l2t )

2π
xP CF =

2
3π

xPαS(l2t )

→ fq(xP, l2t , µ
2), (A.65)
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where fq(xP, l2t , µ
2) is the unintegrated quark distribution

of the proton. This replacement gives

σ̂(qp → gp) =
16π2

9
αS(µ2)

µ2

∫ µ2

0

dl2t
l2t

fq(xP, l2t , µ
2)

=
16π2

9
αS(µ2)

µ2 xPq(xP, µ2), (A.66)

where q(xP, µ2) is the integrated quark distribution of the
proton. Again, we should use the skewed quark distribu-
tions, which gives rise to an extra factor [12]

Rq(λ) =
22λ+3
√

π
Γ (λ + 5/2)
Γ (λ + 3)

, (A.67)

assuming that xP q(xP, µ2) ∝ x−λ
P

at small xP. The final
formula for massive quarks is

F
D(3)
T,qq̄ =

∑
f

e2
f

∫ Q2

4β

m2
f

1−β

dµ2

µ2

1√
1 − 4βµ2/Q2

1
xPBD

×
[

Rq
αS(µ2)

µ
xPq(xP, µ2)

]2 16β

27µ2

× {. . .} , (A.68)

where {. . .} denotes everything inside the curly brackets in
(A.61). Replacing

∑
f e2

f by e2
c and q(xP, µ2) by c(xP, µ2) in

(A.68) gives a formula for diffractive open charm produc-
tion. Alternatively, assuming light quark flavour symmetry,
q(xP, µ2) = S(xP, µ2)/(2nf ) with nf = 3, and making the
approximation µ2 � Q2 we obtain

F
D(3)
T,qq̄ =

∫ Q2

µ2
0

dµ2

µ2 fP=S(xP; µ2) F P=S
T (β, µ2; µ2), (A.69)

where the “pomeron flux factor” is16

fP=S(xP; µ2) =
1

xPBD

[
RS

αS(µ2)
µ

xPS(xP, µ2)
]2

,

(A.70)
and the “pomeron structure function” at a scale µ origi-
nating from a component of the pomeron of size 1/µ is

F P=S
T (β, µ2; µ2) = 〈e2

f 〉βΣP=S(β, µ2; µ2)

= 〈e2
f 〉 4

81
β(1 − β). (A.71)

Recall that the notation P = S is used to indicate that
the perturbative pomeron is represented by two t-channel
sea quarks. Again, (A.71) can be taken as the initial con-
dition for DGLAP evolution and it can be regarded as the
pomeron-to-quark splitting function, Pq,P=S ; see (13).

16 Just as in (A.30), we use a slightly different definition from
that given in [7,8]. Since only the combination (A.69) matters,
we are free to redistribute factors of µ and constants as we please.

A.2.2 Quark dipole with a longitudinally polarised photon

The dipole factorisation formula for Fig. 11a with a longi-
tudinally polarised photon is

dσγ∗p
L,qq̄

dt

∣∣∣∣∣
t=0

(A.72)

=
NC

16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem

∑
h,h′=±1

∣∣∣DΨγ=0
hh′

∣∣∣2 σ̂2,

where
∑

h,h′=±1

∣∣∣DΨγ=0
hh′ (α,kt)

∣∣∣2 =
32
µ2

µ2

Q2 β2, (A.73)

leading, in the case of massive quarks, to

F
D(3)
L,qq̄ =

∑
f

e2
f

∫ Q2

4β

m2
f

1−β

dµ2

µ2

1√
1 − 4βµ2/Q2

µ2

Q2

1
xPBD

×
[

Rq
αS(µ2)

µ
xPq(xP, µ2)

]2 64
27

β3, (A.74)

and in the limit of massless quarks, in the approximation
µ2 � Q2, to

F
D(3)
L,qq̄ =

Q2

4π2αem

β

xP

dσγ∗p
L,qq̄

dβ
(A.75)

=

(∫ Q2

µ2
0

dµ2

µ2

µ2

Q2 fP=S(xP; µ2)

)
F P=S

L (β),

where F P=S
L (β) = (16/81) 〈e2

f 〉 β3. Note that this contribu-

tion toF
D(3)
2 is twist-four due to the extra factorµ2/Q2 with

respect to (A.69), and hence we do not perform leading-
twist DGLAP evolution.

A.2.3 Gluon dipole with a transversely polarised photon

The dipole factorisation formula for Fig. 11b with a trans-
versely polarised photon is

dσγ∗p
gg,T

dt

∣∣∣∣∣
t=0

=
N2

C − 1
16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem

×
∑

m,n=1,2

|DΨmn|2 σ̂2, (A.76)

where ∑
m,n=1,2

|DΨmn(α,kt)|2 =
8
µ2 (1 − β)2

1
β

. (A.77)

The squared matrix element for gq → qg, shown in
Fig. 13b, is

|M|2 =
1
4

C g4

l4t
Tr[γµ/l⊥γρ/pγσ/l⊥γν(/k + /l⊥)]
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×dµν(k, p) dρσ(p − l⊥, k), (A.78)

where the colour factor is

C(gq → gq) =
1

NC

1
N2

C − 1
Tr[tAtAtBtB ] =

2
9

. (A.79)

The dipole cross section is then

dσ̂

dl2t
(gq → qg) =

1
l2t

32π
27

xP

µ2 αS(l2t )αS(µ2), (A.80)

so, making the replacement (A.65), the gp → qp cross
section is

σ̂(gp → qp) =
2π2

3
αS(µ2)

µ2

∫ µ2

0

dl2t
l2t

∑
q

fq(xP, l2t , µ
2)

=
2π2

3
αS(µ2)

µ2 xPS(xP, µ2), (A.81)

assuming light quark flavour symmetry, q(xP, µ2) =
S(xP, µ2)/(2nf ) with nf = 3. Again, we account for the
g → qq̄ splitting using (A.55). Putting everything together,
we finally obtain

F
D(3)
T,(qq̄)g =

∫ Q2

µ2
0

dµ2

µ2 fP=S(xP; µ2) F P=S
T (β, Q2; µ2),

(A.82)
where

F P=S
T (β, Q2; µ2)

= 〈e2
f 〉βΣP=S(β, Q2; µ2)

= 2
∑

f

e2
f

αS(Q2)
2π

ln
(

Q2

µ2

)
β

∫ 1

β

dβ′

β′2 Pqg

(
β

β′

)

×β′gP=S(β′, µ2; µ2), (A.83)

with
β′gP=S(β′, µ2; µ2) =

1
9

(1 − β′)2. (A.84)

We take (A.84) at a scale µ2, which can be interpreted
as the pomeron-to-gluon splitting function Pg,P=S (14), as
the initial condition for DGLAP evolution up to Q2.

A.3 Interference between two-gluon
and two-quark exchange (P = GS)

We must account for interference between two-gluon and
two-quark exchange, that is, interference between Fig. 8a
and Fig. 11a, and between Fig. 8b and Fig. 11b. We label
these contributions using the notation P = GS.

A.3.1 Quark dipole with a transversely polarised photon

The dipole factorisation formula for interference between
Fig. 8a andFig. 11a,with a transversely polarised photon, is

dσγ∗p
T,qq̄

dt

∣∣∣∣∣
t=0

=
NC

16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem (A.85)

× 1
2

∑
γ,h,h′=±1

2
(∫

d2lt
π

DΨγ
hh′

dσ̂

dl2t

)∣∣∣∣∣∣
P=G

(DΨγ
hh′ σ̂)|

P=S
.

Proceeding as before, the final result for massive quarks is

F
D(3)
T,qq̄

=
∑

f

e2
f

∫ Q2

4β

m2
f

1−β

dµ2

µ2

1√
1 − 4βµ2/Q2

RgRq

xPBD

×
[

αS(µ2)
µ

]2
2 xPg(xP, µ2) xPq(xP, µ2)

× 4β

9µ4

{(
m2

f + βµ2) [(1 − β)µ2 − m2
f

](
1 − 2β

µ2

Q2

)

+ m2
f

[
m2

f +
(

β − 1
2

)
µ2
]}

. (A.86)

In the limit of massless quarks, in the approximation µ2 �
Q2, this expression reduces to

F
D(3)
T,qq̄ =

∫ Q2

µ2
0

dµ2

µ2 fP=GS(xP; µ2) F P=GS
T (β, µ2; µ2),

(A.87)
where the “pomeron flux factor” is

fP=GS(xP; µ2) (A.88)

=
RgRS

xPBD

[
αS(µ2)

µ

]2
2 xPg(xP, µ2) xPS(xP, µ2),

and the “pomeron structure function” at a scale µ origi-
nating from a component of the pomeron of size 1/µ is

F P=GS
T (β, µ2; µ2) = 〈e2

f 〉βΣP=GS(β, µ2; µ2)

= 〈e2
f 〉 2

9
β2(1 − β). (A.89)

Again, (A.89) can be taken as the initial condition for
DGLAP evolution and it can be regarded as the pomeron-
to-quark splitting function, Pq,P=GS ; see (15).

A.3.2 Quark dipole with a longitudinally polarised photon

The dipole factorisation formula for interference between
Fig. 8a and Fig. 11a, with a longitudinally polarised pho-
ton, is
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dσγ∗p
L,qq̄

dt

∣∣∣∣∣
t=0

=
NC

16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem (A.90)

×
∑

h,h′=±1

2
(∫

d2lt
π

DΨγ=0
hh′

dσ̂

dl2t

)∣∣∣∣∣∣
P=G

(
DΨγ=0

hh′ σ̂
)∣∣∣

P=S
.

For the case of massive quarks, this leads to

F
D(3)
L,qq̄ =

∑
f

e2
f

∫ Q2

4β

m2
f

1−β

dµ2

µ2

1√
1 − 4βµ2/Q2

µ2

Q2

RgRq

xPBD

×
[

αS(µ2)
µ

]2
2 xPg(xP, µ2) xPq(xP, µ2)

× 8β3

9

(
2β − 1 +

2m2
f

µ2

)
, (A.91)

and in the limit of massless quarks, in the approximation
µ2 � Q2, we obtain

F
D(3)
L,qq̄ =

Q2

4π2αem

β

xP

dσγ∗p
L,qq̄

dβ
(A.92)

=

(∫ Q2

µ2
0

dµ2

µ2

µ2

Q2 fP=GS(xP; mu2)

)
F P=GS

L (β),

where F P=GS
L (β) = (4/9) 〈e2

f 〉 β3 (2β − 1). Note that this

contribution to F
D(3)
2 is twist-four due to the extra factor

µ2/Q2 with respect to (A.87), and hence we do not perform
leading-twist DGLAP evolution.

A.3.3 Gluon dipole with a transversely polarised photon

The dipole factorisation formula for interference between
Fig. 8b and Fig. 11b, with a transversely polarised pho-
ton, is

dσγ∗p
gg,T

dt

∣∣∣∣∣
t=0

=
N2

C − 1
16π

∫ 1

0
dα

∫
dk2

t

2π

∑
f

e2
f αem (A.93)

×
∑

m,n=1,2

2
(∫

d2lt
π

DΨmn dσ̂

dl2t

)∣∣∣∣∣
P=G

(DΨmn σ̂)|
P=S .

Again, we account for the g → qq̄ splitting using (A.55).
Putting everything together, we finally obtain

F
D(3)
T,(qq̄)g =

∫ Q2

µ2
0

dµ2

µ2 fP=GS(xP; µ2) F P=GS
T (β, Q2; µ2),

(A.94)

where

F P=GS
T (β, Q2; µ2)

= 〈e2
f 〉βΣP=GS(β, Q2; µ2)

= 2
∑

f

e2
f

αS(Q2)
2π

ln
(

Q2

µ2

)
β

∫ 1

β

dβ′

β′2 Pqg

(
β

β′

)

×β′gP=GS(β′, µ2; µ2), (A.95)

with

β′gP=GS(β′, µ2; µ2) =
1
4

(1 − β′)2(1 + 2β′). (A.96)

We take (A.96) at a scale µ2, which can be interpreted as
the pomeron-to-gluon splitting function Pg,P=GS (16), as
the initial condition for DGLAP evolution up to Q2.
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10. E. Levin, M. Wüsthoff, Phys. Rev. D 50, 4306 (1994)
11. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)
12. A.G. Shuvaev, K.J. Golec-Biernat, A.D. Martin,

M.G. Ryskin, Phys. Rev. D 60, 014015 (1999)
13. L.N. Lipatov, Phys. Rept. 286, 131 (1997)
14. E. Witten, Nucl. Phys. B 120, 189 (1977)
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